Class Numbers of Real Quadratic Number Fields by Ezra Brown
نویسنده
چکیده
This article is a study of congruence conditions, modulo powers of two, on class number of real quadratic number fields Q(vu), for which d has at most thtee distinct prime divisors. Techniques used are those associated with Gaussian composition of binary quadratic forms. 1. Let hid) denote the class number of the quadratic field Qi\ß) and let h id) denote the number of classes of primitive binary quadratic forms of discriminant d [if d < 0 we count only positive forms]. It is well known [4] that hid) = h\d), unless d> 0 and the fundamental unit e of Qi\fd) has norm 1, in which case bid) =x/¡.h id). Recently many authors have studied conditions on d under which a given power of two divides hid) (see [3, References]). Most of these articles deal with imaginary fields; in this article, we shall treat real fields for which d has at most three distinct prime divisors. Our method used to study this problem is the method of composition of forms, used in [ll, [3]; we have included several known cases for the sake of completeness. 2. Preliminaries. A binary quadratic form is called ambiguous if its square, under Gaussian composition, is in the principal class, i.e. the class representing 1 (see [1] for explanations of any unfamiliar terminology). A class of forms is called ambiguous if it contains an ambiguous form. A form [a, b, c] = ax2 + bxy + cy is called ancipital if b = 0 or b = a. It was known to Gauss that the number of ambiguous classes of discriminant d equals the number of genera of discriminant d (see [7]), and that each ambiguous class of positive nonsquare discriminant contains exactly two ancipital forms with positive first coefficient (see [7]). The primitive forms of discriminant d form an abelian group G of order h id), the operation being composition and the identity being the principal class /. The principal genus G is a subgroup of G consisting of all the classes which are squares under composition; the index of G in G equals the number of genera. If d is the discriminant of a quadratic field, then d is fundamental, i.e. no square s2 > 1 exists for which d/s2 = 0 or 1 (mod 4). Hence the number of genera Received by the editors October 3, 1972. AMS (MOS) subject classifications (1970). Primary 10A15, 10C05, 12A25, 12A50.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملClass Numbers of Quadratic Fields Determined by Solvability of Diophantine Equations
In the literature there has been considerable attention given to the exploration of relationships between certain diophantine equations and class numbers of quadratic fields. In this paper we provide criteria for the insolvability of certain diophantine equations. This result is then used to determine when related real quadratic fields have class number bigger than 1. Moreover, based on criteri...
متن کاملThe Gauss Class-Number Problems
In Articles 303 and 304 of his 1801 Disquisitiones Arithmeticae [Gau86], Gauss put forward several conjectures that continue to occupy us to this day. Gauss stated his conjectures in the language of binary quadratic forms (of even discriminant only, a complication that was later dispensed with). Since Dedekind’s time, these conjectures have been phrased in the language of quadratic fields. This...
متن کاملL - Functions and Class Numbers of Imaginary Quadratic Fields and of Quadratic Extensions of an Imaginary Quadratic Field
Starting from the analytic class number formula involving its Lfunction, we first give an expression for the class number of an imaginary quadratic field which, in the case of large discriminants, provides us with a much more powerful numerical technique than that of counting the number of reduced definite positive binary quadratic forms, as has been used by Buell in order to compute his class ...
متن کاملQuintic Polynomials and Real Cyclotomic Fields with Large Class Numbers
We study a family of quintic polynomials discoverd by Emma Lehmer. We show that the roots are fundamental units for the corresponding quintic fields. These fields have large class numbers and several examples are calculated. As a consequence, we show that for the prime p = 641491 the class number of the maximal real subfield of the pth cyclotomic field is divisible by the prime 1566401. In an a...
متن کامل